

Jellyfish as source of bioactive compounds with nutraceutical value

Stefania De Domenico

CNR-ISPA, ITALY

2 DIC 2021

Stefania De Domenico, Gianluca De Rinaldis, Tonia Gallo & Antonella Leone

Bioactive compounds from jellyfish

Traditional Chinese medicine utilized jellyfish as a treatment for bronchitis, high blood pressure, tracheitis, asthma, and gastric ulcers.

Scientific literature:

Collagen, hydrolysed collagen and low molecular weight compounds

- Antioxidant activity
- Protective effects on skin UV damage
- Immuno-stimulatory effects

Anti-cancer activity

Venoms from several jellyfish

Antimicrobial activity

Jellyfish peptides

Bioactive compounds from Jellyfish

Apulia, Italy

Rhizostoma pulmo

Cassiopea andromeda

Endemic to the Mediterranean Sea

Alien species in Mediterranean Sea

Jellyfish sampling

Jellyfish are caught by nylon net and stored in barrels in refrigerated seawater

Rhizostoma pulmo

R. pulmo

Not very stinging

Cnidocystis in mucus observed at laser scanning confocal microscopy

Nutritional value of Rhizostoma pulmo

Leone et al. Mar. Drugs 2015, 13: 4654-4681

Collagen biotechnological uses

Collagen from jellyfish is similar to mammalian collagen type I

Collagen uses		
Medical uses	Immune-stimulatory - Rheumatoid arthritis and osteoarthritis therapy - Cosmetic surgery - Bone grafts - Tissue regeneration - Reconstructive surgery - Wound care - Drug delivery - Biodegradable hydrogels	
Food / Food Industry uses	Gelatine – Thickeners - Dietary supplements - Functional food	
Cosmetics	Active ingredient	
Other uses	Biomaterials (soil improver in agriculture, construction) -Glue for musical instruments	

R. pulmo

Amino Acid profiles of the *R. pulmo* total proteins

	R. pulmo	
	$mg/100 g \pm SD$	%
Alanine (Ala)	3.5 ± 0.2	3.9
Arginine (Arg)	1.8 ± 0.0	2.0
Aspartic acid + Asparagine (Asx) *	2.9 ± 0.6	3.2
Cysteine (Cys)	1.2 ± 0.0	1.3
→ Glutamic acid + Glutamine (Glx) **	13.7 ± 0.2	15.2
→ Glycine (Gly)	4.8 ± 0.5	5.3
→ Histidine (His) ^e	5.0 ± 0.4	5.6
Isoleucine (Ile) e	4.9 ± 0.7	5.5
Leucine (Leu) ^e	8.2 ± 0.4	9.1
Lysine (Lys) e	6.2 ± 0.4	6.9
Methionine (Met) e	4.1 ± 0.7	4.6
→ Phenylalanine (Phe) ^e	8.4 ± 0.8	9.3
→ Proline (Pro)	3.5 ± 0.2	3.9
→ Serine (Ser)	60±08	6.7
Threonine (Thr) ^e	4.5 ± 0.1	5.0
→ → Tyrosine (Tyr)	6.8 ± 0.6	7.6
Tryptophan (Try) e	n.d.	_
Valine (Val) e	4.4 ± 0.4	4.9
Σαα	89.9 ± 7.0	100
∑eaa	45.7 ± 3.9	50.8
∑caa	36.6 ± 2.3	40.7
Σααα	20.2 ± 1.8	22.5

EAA=Essential Amino Acids

CAA=Conditionally Essential Amino Acids

AAA=Aromatic Amino Acids

Food peptides with antioxidant activity

Leone et al. Mar. Drugs 2015 13:4654-4681

Bioactive peptides

- Small protein fragments providing several health benefits
- Short-chain protein molecules (usually 3-20 amino acid residues)
- Peptides are released during food processing or as result of enzymatic or chemical hydrolyses
- Their functions, MW and amino acid composition are largely influenced by the nature of proteins, hydrolytic enzymes, enzyme-substrate ratio, pH, temperature and time of reaction.

Antioxidant activity in vitro

De Domenico et al. Mar. Drugs 2019 <u>10.3390/md17020134</u>

Effect on HEKa (human cell cultures)

R. pulmo

Human epidermal keratinocytes isolated from adult skin (HEKa)

Effect of heat treatment on cytotoxic soluble proteins (SP)

100°C/10 min

Jellyfish small soluble proteins and peptides are not cytotoxic.

Cytotoxicity of larger soluble proteins decreased after thermal treatment.

Immuno-modulatory effect of jellyfish peptides

Oxidation and Inflammation
The link with age related chronic diseases

R. pulmo

Jellyfish peptides have immuno-modulatory effect:

- no pro-inflammatory effect on human monocytes and macrophages in vitro.
- Some JF peptides shows anti-inflammatory activity.

The "upside-down" Cassiopea andromeda jellyfish

C. andromeda

Photosynthetic microalgal endosymbionts (zooxanthellae)

Soluble and Insoluble compounds extraction from umbrella and oral

C. andromeda

Lyophilized Jellyfish (Whole, Umbrella, Oral Arms)

Aqueous
extraction (PBS)

Hydroalcoholic
extraction (80% EtOH)

Soluble compounds

Soluble compounds

Jellyfish **oral arms** show a higher soluble **protein** content than umbrella.

Jellyfish hydroalcoholic extracts present high antioxidant activity.

De Rinaldis et al. Mar. Drugs 2021, 19, 498

Antioxidant activity in vitro

Jellyfish peptides both from umbrella and oral arms present high antioxidant activity

General Conclusions

R. pulmo proteins and peptides

- Antioxidant activity
- Not cytotoxic on human cells
- Immuno-modulatory effect (anti-inflammatory effect) on human cells

C. andromeda extracts

- Antioxidant activity
- Oral arms rich in proteins and phenols
- Anti-proliferative activity on cancer cells

Jellyfish can be regarded as a novel source of active natural compounds for current and future applications in biomedical and nutraceutical studies.

Acknowledgements

These studies were developed at the Institute of Sciences of Food Production of the National Research Council, Unit of Lecce (CNR-ISPA) under the supervision of Dr. Antonella Leone.

Funded by the H2020 EU project "GoJelly – A gelatinous solution to plastic pollution" n.774499

Thank You

Antonella Leone

Stefania De Domenico

Antonia Gallo

Gianluca De Rinaldis

Gianluca Bleve

Clara Albano

